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Abstract 
 

A detailed analysis shows that the Molten-Salt Reactor Experiment is inherently stable.  It has 
sluggish transient response at low power, but this creates no safety or operational problems.  The 
study included analysis of the transient response, frequency response, and pole configuration.  The 
effects of changes in the mathematical model for the system and in the characteristic parameters 
were studied.  A systematic analysis was also made to find the set of parameters, within the 
estimated uncertainty range of the design values, that gives the least stable condition.  The system 
was found to be inherently stable for this condition, as well as for the design condition. 
 
The system stability was underestimated in earlier studies of MSRE transient behavior.  This was 
partly due to the approximate model previously used.  The estimates of the values for the system 
parameters in the earlier studies also led to less stable predictions than current best values. 
 
The stability increases as the power level increases and is largely determined by the relative 
reactivity contributions of the prompt feedback and the delayed feedback.  The large heat 
capacities of system components, low heat transfer coefficients, and fuel circulation cause the 
delayed reactivity feedback. 

 
1. Introduction 
 
Investigations of inherent stability constitute an essential part of a reactor evaluation.  This is 
particularly true for a new type of system, such as the MSRE.  The first consideration in such an 
analysis is to determine whether the system possesses inherent self-destruction tendencies.  Other 
less important but significant considerations are the influence of inherent characteristics on 
control system requirements and the possibility of conducting experiments that require constant 
conditions for extended periods. 
 
Several approaches may be used for stability analysis.  A complete study of power reactor 
dynamics would take into account the inherent non-linearity of the reactivity feedback.  It is not 
difficult to calculate the transient response of nonlinear systems with analog or digital computers.  
On the other hand, it is not currently possible to study the stability of multi-component nonlinear 
systems in a general fashion.  The usual method is to linearize the feedback terms in the system 
equations and use the well-developed methods of linear-feedback theory for stability analysis.  
This leads to the use of the frequency response (Bode plots or Nyquist plots) or root-locus for 
stability analysis.  This study included nonlinear transient-response calculations and linearized 
frequency-response and root-locus calculations. 
 
The stability of a dynamic system can depend on a delicate balance of the effects of many 
components.  This balance may be altered by changes in the mathematical model for the system 
or by changes in the values of the parameters that characterize the system.  Since neither perfect 
models nor exact parameters can be obtained, the effect of changes in each of these on predicted 
stability should be determined, as was done in this study. 



 
The transient and frequency responses obtained in a stability analysis are also needed for 
comparison with results of dynamic tests on the system.  The dynamic tests may indicate that 
modifications in the theoretical model or in the design data are needed.  Such modifications can 
provide a confirmed model that may be used for interpreting any changes possibly observed in 
the MSRE dynamic behavior in subsequent operation and for predicting, with confidence, the 
stability of other similar systems. 
 
2. Description of the MSRE 
 
The MSRE is a graphite-moderated, circulating-fuel reactor with fluoride salts of uranium, 
lithium, beryllium, and zirconium as the fuel. (ref 1) The basic flow diagram is shown in Figure 
1.  The molten fuel-bearing salt enters the core matrix at the bottom and passes up through the 
core in channels machined out of 2-in. graphite blocks.  The 10 MW of heat generated in the fuel 
and transferred from the graphite raises the fuel temperature from 1175°F at the inlet to 1225°F 
at the outlet.  When the system operates at lower power, the flow rate is the same as at 10 MW, 
and the temperature rise through the core decreases.  The hot fuel salt travels to the primary heat 
exchanger, where it transfers heat to a non-fueled secondary salt before reentering the core.  The 
heated secondary salt travels to an air-cooled radiator before returning to the primary heat 
exchanger. 

 
Dynamically, the two most important characteristics of the MSRE are that the core is 
heterogeneous and that the fuel circulates.  Since this combination of important characteristics is 
uncommon, a detailed study of stability was required.  The fuel circulation acts to reduce the 
effective delayed-neutron fraction, to reduce the rate of fuel temperature change during a power 
change, and to introduce delayed fuel-temperature and neutron-production effects.  The 
heterogeneity introduces a delayed feedback effect due to graphite temperature changes. 
 
The MSRE also has a large ratio of heat capacity to power production.  This indicates that 
temperatures will change slowly with power changes.  This also suggests that the effects of the 
negative temperature coefficients will appear slowly, and the system will be sluggish.  This type 
of behavior, which is more pronounced at low power, is evident in the results of this study. 
 
Another factor that contributes to the sluggish time response is the heat sink—the air radiator.  
An approximate time constant for heating and cooling the entire primary and secondary system 
was found by considering all the salt, graphite, and metal as one lumped heat capacity that 
dumps heat through a resistance into the air (sink), as indicated in Figure 2.  For the reactor 



operating at 10 MW with a mean reactor temperature of about 1200°F and a sink temperature of 
about 200°F, the effective resistance must be (1200°F - 200°F)/(10 MW) = 100°F/MW. 
 

 
 
Thus the overall time constant is (12 MW*sec/°F)*(100°F/MW) = 1200 sec = 20 min. 
 
For the reactor operating at 1 MW, the sink temperature increases to about 400°F.  This is due to 
a reduction in cooling air flow provided at low power to keep the fuel temperature at 1225°F at 
the core exit. In this case the resistance is (1200°F - 400°F)/(1 MW) = 800°F/MW, and the 
overall time constant becomes (12 MW*sec/°F)*(800°F/MW) = 9600 sec = 3 hr. 
 
This very long time-response behavior would not be as pronounced with a heat sink such as a 
steam generator, where the sink temperatures would be considerably higher. 
 

 
3. Review of Studies of MSRE Dynamics 
 
Three types of studies of MSRE dynamics were previously made: (1) transient-behavior analyses 
of the system during normal operation with an automatic controller, (2) abnormal-transient and 
accident studies, and (3) transient-behavior analyses of the system without external control.  The 
automatic rod control system operates in either a neutron-flux control mode, for low-power 
operation, or in a temperature control mode at higher powers. (ref 2) The predicted response of 
the reactor under servo control for large changes in load demand indicated that the system is both 
stable and controllable.  The abnormal-transient and accident studies showed that credible 
transients are not dangerous. (ref 3) 
 



The behavior of the reactor without servo control was initially investigated in 1960 and 1961 by 
Burke. (ref 4-7) A subsequent controller study by Ball (ref 8) in 1962 indicated that the system 
had greater inherent stability than predicted by Burke.  Figure 3 shows comparable transient 
responses for the two cases.  The differences in predicted response are due to differences both in 
the model and in the parameters used and will be discussed in detail in Section 6. 
 
There are two important aspects of the MSRE's inherent stability characteristics that were 
observed in the earlier studies.  First, the reactor tends to become less stable at lower powers, and 
second, the period of oscillation is very long and increases with lower powers.  As shown in 
Figure 3, the period is about 9 min at 1 MW, so any tendency of the system to oscillate can be 
easily controlled.  Also, since the system is self-stabilizing at higher powers, it would not tend to 
run away, or as in this case, creep away.  The most objectionable aspect of inherent oscillations 
would be their interference with tests planned for the reactor without automatic control. 
 
4. Description of Theoretical Models 
 
Several different models have been used in the dynamic studies of the MSRE.  Also, because the 
best estimates of parameter values were modified periodically, each study was based on a 
different set of parameters.  Since the models and parameters are both important factors in the 
prediction of stability, their influence on predicted behavior was examined in this study.  Tables 
1, 2, and 3 summarize the various models and parameter sets used.  Table 1 lists the parameters 
for each of the three studies, Table 2 indicates how each part of the reactor was represented in 
the three different models, and Table 3 indicates which model was used for each study.  The 
three models are referred to subsequently as the "Reduced," "Intermediate," and "Complete" 
models, as designated in Table 2.  The models are described in this section, and the equations 
used are given in Appendix A.  The coefficients for each case are listed in Appendix B. 



 



 
 

 
 



Core Fluid Flow and Heat Transfer 
 
A typical scheme for representing the thermal dynamics of the MSRE core is shown in Figure 4. 
The arrows indicating heat transfer require additional explanation. It was desired to base the 
calculation of heat transfer rate between the graphite and the fuel stream on the difference of 
their average temperatures.  The outlet of the first lump or "well-stirred tank" in the fuel stream 
is taken as the fluid average temperature.  Thus a dotted arrow is shown from this point to the 
graphite to represent the driving force for heat transfer.  However, all the mass of the fluid is in 
the lumps, and the heat transferred is distributed equally between the lumps.  Therefore solid 
arrows are shown from the graphite to each fluid lump to indicate actual transfer of heat. 
 

 
 
This model was developed by E. R. Mann and has distinct advantages over the usual model for 
representing the fluid by a single lump in which the following algebraic relationship is used to 
define the mean fuel temperature: 

 
2

outletT inlet TmeanT FF
F


   

The outlet temperature of the model is given by 

 inletT mean 2ToutletT FFF    

Since the mean temperature variable represents a substantial heat capacity (in liquid systems), it 
does not respond instantaneously to changes in inlet temperature.  Thus a rapid increase in inlet 
temperature would cause a decrease in outlet temperature—clearly a nonphysical result.  With 
certain limitations on the length of the flow path, (ref 9) Mann's model avoids this difficulty. 
 
The reduced MSRE model used one region to represent the entire core, and the nuclear average 
temperatures were taken as the average graphite temperature (TG) and the temperature of the first 
fuel lump (TF1).  The nuclear average temperature is defined as the temperature that will give the 
reactivity feedback effect when multiplied by the appropriate temperature coefficient of 
reactivity. 
 
The intermediate and complete models employ the nine-region core model shown schematically 
in Figure 5.  Each region contains two fuel lumps and one graphite lump, as shown in Figure 4.  
This gives a total of 18 lumps (or nodes) to represent the fuel and nine lumps to represent the 
graphite.  The nuclear power distribution and nuclear importances for all 27 lumps were 



calculated with the digital code EQUIPOISE-3A, which solves steady-state, two-group, neutron-
diffusion equations in two dimensions. 

 
Tests were made on the MSRE full-scale core hydraulic mockup (ref 10) to check the validity of 
the theoretical models of core fluid transport.  A salt solution was injected suddenly into the 
1200-gpm water stream at the reactor vessel inlet of the mockup, and the response at the reactor 
outlet was measured by a conductivity probe.  The frequency response of the system was 
computed from the time response by Samulon's method (ref 11) for a sampling rate of 2.5/sec.  
The equivalent mixing characteristics of the theoretical models are computed from the transfer 
function of core outlet-to-inlet temperature by omitting heat transfer to the graphite and adding 
pure delays for the time for fluid transport from the point of salt injection to the core inlet and 
from the core outlet to the conductivity probe location.  A comparison of the experimental, one-
region, and nine-region transfer functions is shown by frequency-response plots in Figure 6.  
Both theoretical curves compare favorably with the experimental curve, especially in the range 
of frequencies important in the stability study (0.01 to 0.1 radians/sec).  The relatively large 
attenuation of the magnitude ratios at frequencies as low as 0.1 to 1.0 radians/sec is due to a 
considerable amount of axial mixing, which is to be expected at the low Reynolds number of the 
core fluid flow (~1000).  This test indicates that the models used for core fuel circulation in the 
stability analyses are adequate. 



 
Neutron Kinetics 
 
The standard one-point, nonlinear, neutron kinetics equations with one average delayed-neutron 
group were used in all the analog and digital transient response studies.  Linearized equations 
were used for all the other studies.  In the studies of a nine-region core model, weighted values of 
nuclear importance for each of the 27 lumps were used to compute the thermal feedback 
reactivity.  Six delayed-neutron groups and the dynamic effects of the circulation of the 
precursors around the primary loop were included in the complete model. 
 
Heat Exchanger and Radiator 
 
The lumping scheme used to represent heat transfer in both the heat exchanger and the radiator is 
shown in Figure 7.  As with the core model, two lumps are used to represent each fluid flow 
path.  The reduced and intermediate models both used one section as shown.  The complete 
model used ten of these sections connected sequentially. 



 
 
Fluid Transport and Heat Transfer in Connecting Piping 
 
The reduced model used single well-stirred-tank approximations for fluid transport in the piping 
from the core to the heat exchanger, from the heat exchanger to the core, from the heat 
exchanger to the radiator, and from the radiator back to the heat exchanger.  Since the flow is 
highly turbulent (primary system, Re ~ 240,000; secondary system, Re ~ 120,000), there is 
relatively little axial mixing, and thus a plug flow model is probably superior to the well-stirred-
tank model.  Fourth-order Pade approximations were used in the intermediate model and pure 
delays in the complete model (see Appendix A).  Heat transfer to the piping and vessels was also 
included in the complete model. 
 
Xenon Behavior 
 
The transient poisoning effects of xenon in the core were considered only in the complete model.  
The equations include iodine decay into xenon, xenon decay and burnup, and xenon absorption 
into the graphite. 
 
Delayed Power 
 
In all three models, the delayed-gamma portion of the nuclear power was approximated by a 
first-order lag. 
 
5. Stability Analysis Results 
Data were obtained with the best available estimates of the system parameters for analysis by the 
transient-response, closed-loop frequency-response, open-loop frequency-response, and pole-
configuration (root locus) methods.  The advantages in using various analytical methods are that 
(1) comparison of the results provides a means of checking for computational errors; (2) some 
methods are more useful than others for specific purposes; for example, the pole-configuration 
analysis gives a clear answer to the question of stability, but frequency-response methods are 
needed to determine the physical causes of the calculated behavior; and (3) certain methods are 
more meaningful to a reader than others, depending on his technical background.  The 
differences between the results and earlier results (ref 4-7) are discussed in Section 6, and the 



effects of changes in the mathematical model and the system parameters are examined in Section 
7. 
 
The results show that the MSRE has satisfactory inherent stability characteristics.  Its inherent 
response to a perturbation at low power is characterized by a slow return to steady state after a 
series of low-frequency oscillations.  This undesirable but certainly safe behavior at low power 
can easily be smoothed out by the control system. (ref 2) 
 
Transient Response 
 
The time response of a system to a perturbation is a useful and easily interpreted measure of 
dynamic performance.  It is not as useful in showing the reasons behind the observed behavior as 
some of the other methods discussed below, but it has the advantage of being a physically 
observable (and therefore familiar) process. 
 
The time response of the reactor power to a step change in keff was calculated.  The IBM-7090 
code MATEXP (ref 12) was used.  MATEXP solves general, nonlinear, ordinary differential 
equations of the form 

    tfxxAAx
dt
dx

  (1) 

where 
 
x = the solution vector (system state variables), 
A = system matrix (constant square matrix with real coefficients), 
ΔA(x) = a matrix whose elements are deviations from the values in A, [thus ΔA(x)x includes all 
nonlinear effects and time delay terms], 
f(t) = forcing function. 
 
The A matrix was developed for the intermediate model and resulted in a 59 x 59 matrix. 
 
The transient response of the neutron level to a step change in keff of +0.01% is shown in Figure 
8 for initial power levels of 10 and 1 MW.  The slow response is evident.  Figure 8 also clearly 
shows that the reactor takes longer to return to steady state in a 1-MW transient than in a 10-MW 
transient.  It is also clear that the power does not diverge (i.e., the system is stable). 
 
It should be emphasized that this transient analysis included the nonlinearities inherent in the 
neutron kinetics equations.  The fact that the results of the other analyses presented below, which 
are based on linear models, agree in substance with these results verifies the adequacy of the 
linear analyses for small perturbations. 



 
 
Closed-Loop Frequency Response 
 
The closed-loop transfer function is defined as the Laplace transform of a selected output 
variable divided by the Laplace transform of a selected input variable.  If the system is stable, it 
is possible to replace the Laplace transform variable, s, with jω, where j = √-1 and ω is the 
angular frequency of a sinusoidal input.  A transfer function, G(ω), evaluated at a particular ω is 
a complex quantity.  The amplitude of G(ω) physically represents the gain, or the ratio of the 
amplitude of the output sinusoid to the amplitude of the input sinusoid.  The phase angle of G(ω) 
represents the phase difference between the input and output sinusoids.  A logarithmic plot of 
amplitude ratio and phase angle as a function of ω is called a Bode plot, or frequency-response 
plot. 
 
The relationship between the frequency response and the time response due to a sinusoidal input 
is useful conceptually and experimentally.  However, it may be shown that the Bode plot for a 
linear system also provides qualitative stability information that is not restricted to any particular 
form in input. (ref 13) This information is largely contained in the peaks in the amplitude ratio 
curve.  High narrow peaks indicate that the system is less stable than is indicated by lower 
broader peaks. 
 
The closed-loop frequency response was calculated for N (neutron level fluctuations in 
megawatts) as a function of δk (change in input keff).  The MSFR code (a special-purpose code 
for the MSRE frequency-response calculations; see Appendix C) and the complete model were 
used for this calculation.  The results for several power levels are shown in Figure 9.  Fewer 
phase-angle curves than magnitude curves are shown in order to avoid cluttering the plot. 
 
Several observations can be based on the information of Figure 9.  First, the peaks of the 
magnitude curves get taller and sharper with lower power.  This indicates that the system is more 
oscillatory at low power.  Also the peaks in the low-power curves rise above the no-feedback 
curve.  This indicates that the feedback is regenerative at these power levels.  Also, since the 



frequency at which the magnitude ratio has a peak approximately corresponds to the frequency at 
which the system will naturally oscillate in response to a disturbance, the low-power oscillations 
are much lower in frequency than the 10-MW oscillations.  The periods of oscillation range from 
22 min at 0.1 MW to 1.3 min at 10 MW. 



 



Figure 9 shows that the peak of the 10-MW magnitude ratio curve is very broad and indicates 
that any oscillation would be small and quickly damped out.  The dip in this curve at 0.25 
radians/sec is due to the 25-sec fuel circulation time in the primary loop [i.e., (2π radians/cycle)/ 
(25 sec/cycle) = 0.25 radians sec].  Here a fuel-temperature perturbation in the core is reinforced, 
by the perturbation generated one cycle earlier that traveled around the loop.  Because of the 
negative fuel-temperature coefficient of reactivity, the power perturbation is attenuated. 
 
The relatively low gains shown at low frequencies can be attributed to the large change in 
steady-state core temperatures that would result from a relatively small change in nuclear power 
with the radiator air flow rate remaining constant.  This means that only a small change in power 
is required to bring about cancellation of an input δk perturbation by a change in the nuclear 
average temperatures. 
 
Open-Loop Frequency Response 
 
A simplified block diagram representation of a reactor as a closed-loop feedback system is 
shown in Figure 10.  The forward loop, G, represents the nuclear kinetics transfer function with 
no temperature effects, and the feedback loop, H, represents the temperature (and reactivity) 
changes due to nuclear power changes. 
 

 
 
The closed-loop equation is found by solving for N in terms of δk: 

 GHNkGN in     

or 

 
GH
G

k
N

in 


1
 (2) 

The quantity GH is called the open-loop transfer function, and represents the response at point b 
of Figure 10 if the loop is broken at point b.  Equation 2 shows that the denominator of the 
closed-loop transfer function vanishes if GH = -1.  Also, according to the Nyquist stability 
criterion, the system is unstable if the phase of GH is more negative than -180° when the 
magnitude ratio is unity.  Thus it is clear that the open-loop frequency response contains 
information about system dynamics that are important in stability analyses. 
 



A useful measure of system stability is the phase margin.  It is defined as the difference between 
180° and the open-loop phase angle when the gain is 1.0.  A discussion of the phase margin and 
its uses may be found in suitable references on servomechanism theory. (ref 13) For this 
application, it suffices to note that smaller phase margins indicate reduced stability.  A general 
rule of thumb in automatic control practice is that a phase margin of at least 30° is desirable.  
Phase margins less than 20° indicate lightly damped oscillation and poor control.  Zero degrees 
indicates an oscillating system, and negative phase margins indicate instability. 
 

 
The phase margin as a function of reactor power level is shown in Figure 11.  The phase margin 
decreases as the power decreases and goes below 30° at about 0.5 MW.  However, the phase 
margin is still positive (12°) at 0.1 MW.  These small phase margins at low power suggest slowly 
damped oscillations, as has been observed in the transient-response and closed-loop frequency-
response results.  The period of oscillation as a function of power level is also shown in Figure 
11. 
 
Figure 12 shows Nyquist plots for the open-loop transfer function, GH, at 1.0 MW and 10.0 
MW.  It is clear that the unstable condition of (|GH|) = 1 and phase angle -180°) is avoided.  In 
order for the phase margin to be a reliable indication of stability, the Nyquist plot must be "well-
mannered" inside the unit circle; that is, it should not approach the critical (-1.0 +j0) point.  
Although the curves shown in Figure 12 behave peculiarly in approaching the origin, they do not 
get close to the critical point. 
 
Pole Configuration 
 
The denominator (1 + GH) of the closed-loop transfer function of a lumped-parameter system is 
a polynomial in the Laplace transform variable, s.  The roots of this polynomial (called the 
characteristic polynomial) are the poles of the system transfer function.  The poles are equal to 
the eigenvalues of the system matrix A in Equation 1.  A necessary and sufficient condition for 
linear stability is that the poles all have negative real parts.  Thus, it is useful to know the 
location of the poles in the complex plane and the dependence of their location on power level. 
 
 



 

 



The poles were calculated for the intermediate model of the MSRE (see Section 4).  The matrix 
used was the linearized version of the 59 x 59 matrix used in the transient analysis.  The 
calculations were performed with a modification of the general matrix eigenvalue code QR (ref 
14) for the IBM-7090.  The results are shown in Figure 13 for several of the major poles.  All the 
other poles lie far to the left of the ones shown.  It is clear from Figure 13 that the system is 
stable at all power levels.  The set of complex poles that goes to zero as the power decreases is 
the set primarily responsible for the calculated dynamic performance.  The imaginary part of this 
set approximately represents the natural frequency of oscillation of the system following a 
disturbance.  The frequency of oscillation decreases as the power decreases, as observed 
previously. 
 
6. Interpretation of Results 
 
Explanation of the Inherent Stability Characteristics 
 
A physical explanation of the predicted stability characteristics is presented in this section, and 
an attempt is made to explain the reasons for the changes in inherent stability with power level.  
The reasons for the behavior are not intuitively obvious.  Typically a feedback system will 
become more stable when the open-loop gain is reduced.  The MSRE, however, becomes less 
stable at lower powers.  In the discussion of open-loop frequency response (section 5) it was 
noted that the forward-loop transfer function G represents the nuclear kinetics (N/δk) with no 
temperature-feedback effects, and from the equations (Appendix A), the gain of G is directly 
proportional to power level.  Thus the MSRE is not "typical" but has the characteristics of what 
is known as a "conditionally stable" system. (ref 15) 
 

 
The MSRE analysis is complicated further by the complexity of the feedback loop H, which 
represents the reactivity effects due to fuel and graphite temperature changes resulting from 
changes in nuclear power.  A more detailed breakdown of the components of H is given in 
Figure 14.  This core thermal model has two inputs, the nuclear power N and core inlet 
temperature Tci, and three outputs, nuclear average fuel and graphite temperatures TF* and TG*, 
and the core outlet temperature Tco.  The block "External Loops" represents the primary loop 



external to the core, the heat exchanger, the secondary loop, and the radiator.  All the parameters 
are treated as perturbation quantities or deviations from their steady-state values.  Also the 
radiator air flow rate is adjusted so that with a given steady-state power level, the core outlet 
temperature is 1225°F.  This means that the feedback loop transfer function H also varies with 
power level. 

 



 
If we look at the effect of perturbations in power, N, on the core inlet temperature, Tci, we can 
see that the effects of different air flow rates are only apparent at low frequencies, as in Figure 
15, which shows the Bode plots for Tci/N at N0 = 1 and 10 MW.  It is important to note that at 
low power and at low frequency, the magnitude of the temperature change is large, and it lags 
the input N considerably.  For example, at N0 = 1 MW and ω = 0.0005 radians/sec, the 
magnitude ratio is 170°F/MW and the phase lag is 80°.  The block diagram of Figure 14 
indicates that the nuclear average temperature perturbations in T*F and T*G can be considered to 
be caused by the two separate inputs N and Tci.  For example, the open-loop transfer function 
T*F/N (with Tci constant) is 5.0°F/MW at steady state, and there is little attenuation and phase 
lag up to relatively high frequencies, as, in Figure 16, which shows the open-loop transfer 
functions of the nuclear average temperatures as functions of N and Tci.  Returning to the 
example case of N0 = 1 MW and ω = 0.0005 radians/sec, we note that the prompt feedback effect 
of 5°F/MW from T*F/N is very small compared with temperature changes of the entire system 
represented by a Tci/N of 170°F/MW at -80°.  (Note that T*F/Tci = 1.0 at 0.0005 radians/sec.)  
The important point here is that for low power levels over a wide range of low frequencies, the 



large gain of the frequency response of overall system temperature relative to power dominates 
the feedback loop H, and its phase angle approaches -90°. 
 

 
 
The no-feedback curve in Figure 9 shows that at frequencies below about 0.005 radians/sec, the 
forward-loop transfer function N/δk (open loop) also has a phase approaching -90° and a gain 
curve with a -1 slope (i.e., one-decade attenuation per decade increase in frequency).  With both 
G and H having phase angles approaching -90°, the phase of the product GH will approach 
-180°.  If the magnitude ratio of G were such that |GH| = 1.0 under these conditions, the system 
would approach instability.  From the Bode plot of Figure 9, it can be seen that at a power of 0.1 
MW, |GH| ~ 1.0 at 0.0045 radians/sec (22-min/cycle), since the peak in the closed-loop occurs 
there.  At lower powers and consequently lower gains G, |GH| approaches 1.0 at even lower 
frequencies, where the phase of GH is closer to -180°.  This accounts for the less stable 
conditions at the lower powers and lower frequencies. 
 
At the higher powers, |GH| approaches 1.0 at higher frequencies where the effect of the prompt 
thermal feedback is significant.  For example, the peak in the 10-MW closed-loop Bode plot of 
N/δk, Figure 9, occurs at 0.078 radians/sec.  At this frequency, |Tci/N| has a value of 2.0 (Figure 



15) compared with a T*F/N of 4.4 at -15° (Figure 16).  Consequently, the prompt fuel 
temperature feedback term has a dominant stabilizing effect. 
 
The relative importances of the various components of feedback reactivity are shown in the 
directed-line diagrams of Figure 17 for power levels of 1 and 10 MW and at the frequencies at 
which the oscillations occur.  The vectors labeled -δkF, and -δkG represent the products of the 
nuclear temperature components and the reactivity coefficients that result from a unit vector 
input δkin.  The vectors labeled "prompt" are the effects due to the nuclear power input based on 
no change in core inlet temperature.  Those labeled "loop" are caused by changes in core inlet 
temperature alone. For example: 
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The net δk vector is the sum of the input and feedback vectors.  For the 1-MW case, δk net is 
greater than δkin; this indicates regenerative feedback and shows up on the closed-loop Bode plot 
(Figure 9) as a peak with a greater magnitude ratio than that of the no-feedback curve. 
 
The increased stabilizing effect of the prompt fuel temperature term in going from 1 to 10 MW is 
also evident.  These plots clearly show the diminished effect of the graphite at the higher 
frequency. 
 
In both cases, too, the plots show that a more negative graphite temperature coefficient would 
tend to increase the net δk vector and hence destabilize the system. 
 
Interpretation of Early Results 
 
The previously published results of a dynamic study performed in 1961 predicted that the MSRE 
would be less stable than is predicted in this study.  This is partly because of differences in 
design parameters and partly because of differences in the models used.  These differences were 
reviewed in Section 4 of this report. 
 
The most significant parameter changes from 1961 to 1965 were the values for the fuel and 
graphite temperature coefficients of reactivity and the changes in the fuel heat capacity.  Table 1 
(Section 4) shows that the new fuel coefficient is more negative, the new graphite coefficient is 
less negative, and the fuel heat capacity is smaller than was thought to be the case in 1961.  All 
these changes contribute to the more stable behavior calculated with the current data.  (The 
destabilizing effect of a more negative graphite temperature coefficient is discussed in Section 
7.) 
 



The most important change, however, is the use of a multi-region core model and the calculation 
of the nuclear average temperature.  In the single-region core, T*F is equal to the temperature of 
the first of the two fuel lumps or the average core temperature (in steady state).  In the nine-
region core, T*F, is computed by multiplying each of the 18 fuel-lump temperatures by a nuclear 
importance factor, I.  In the single-region model, the steady-state value of T*F/N (with Tci 
constant) is only 2.8°F/MW compared with 5.0°F/MW for the nine-region core model.  This 
difference occurs because in the nine-region model, the downstream fuel-lump temperatures are 
affected not only by the power input to that lump but also by the change in the lump's inlet 
temperature due to heating of the upstream lumps.  This point may be illustrated by noting the 
difference between two single-region models, where in one case the nuclear importance of the 
first lump is 1.0 and in the other case the importance of each lump is 0.5.  As an example, say the 
core outlet temperature increases 5°F/MW.  The change in T*F for a 1-MW input would be 

 2211
* TITITF    

In the first case I1 = 1.0 and ΔT1 = 2.5°F, so ΔT*F = 2.5°F. In the second-case, I1 = I2 = 0.5, ΔT1 
= 2.5°F, and ΔT2 = 5°F, so ΔT*F, = 3.75°F, or a 50% greater change than in case one.  For many 
more lumps, this effect is even greater. 
 
As was shown above, the prompt fuel reactivity feedback effect was the dominant stabilizing 
mechanism at both 1 and 10 MW, so the original single-region core model would give 
pessimistic results. 
 
7. Perturbations in the Model and the Design Parameters 
 
Every mathematical analysis of a physical system is subject to some uncertainty because of two 
questions: How good is the mathematical model, and how accurate are the values of the 
parameters used in the model?  The influence of changes in the assumed model was therefore 
investigated, and the sensitivity to parameter variations of the results based on both the reduced 
and complete models was determined.  An analysis was also performed to determine the worst 
expected stability performance within the estimated range of uncertainty of the system 
parameters. 
 
Effects of Model Changes 
 
The effects of changing the mathematical model of the system were determined by comparing 
the phase margins with the reference case as each part of the model was changed in turn.  The 
following changes were made: 
 
1. Core Representation. A single-region core model was used instead of the nine-region core 
used in the complete model. 
 
2. Delayed-Neutron Groups. A single delayed-neutron group was used instead of the six-group 
representation in the complete model. 
 



3. Fixed Effective β's. The usual constant-delay-fraction delayed-neutron equations were used 
with an effective delay fraction, β, for each precursor.  The effective β was obtained by 
calculating the delayed-neutron contribution that is reduced due to fluid flow in the steady-state 
case.  This is in contrast to the explicit treatment of dynamic circulation effects in the complete 
model (see Appendix A). 
 
4. First-Order Transport Lags. The Laplace transform of a pure delay, exp(-τs), was used in the 
complete model.  The first-order well-stirred-tank approximation, 1/(l + τs) was used in the 
modified model. 
 
5. Single-Section Heat Exchanger and Radiator. A single section was used to represent the heat 
exchanger and radiator rather than the ten-section representation in the complete model. 
 
6. Xenon. The xenon equations were omitted in contrast to the explicit xenon treatment in the 
complete model. 
 
The results are shown in Table 4.  The only significant effect is that due to a change in the core 
model.  The results for the one-region core model indicate considerably less stability than for the 
nine-region core model.  This difference is due primarily to the different way in which the 
nuclear average temperature of the fuel is calculated, as was discussed in detail in Section 6. 
 



 
 
Effects of Parameter Changes 
 
Frequency-response sensitivities and pole sensitivities were calculated.  Frequency-response 
sensitivities are defined as fractional changes in magnitude or phase per fractional change in a 
system parameter.  The magnitude frequency-response sensitivities were calculated for several 
important parameters with the MSFR code (see Appendix C) for the complete model.  The 
sensitivities were obtained by differences between the results of calculations at the design point 
and those of calculations with a single parameter changed slightly.  The results of these 
calculations are shown in Figure 18.  Calculations were also performed on the system with the 
reduced model with a new computer code called SFR (Sensitivity of the Frequency Response).  
This code calculates magnitude and phase sensitivities for a general system by matrix methods.  
This calculation was restricted to the reduced system representation because of the large cost of 
calculations for very large matrices.  The results of this calculation are given in Figure 19.  In 
Figures 18 and 19, a positive sensitivity indicates that a decrease in the system parameter will 
decrease the magnitude of the frequency response.  The situation is reversed for negative 
sensitivities. 
 



 
 

 



 



The sensitivities shown in Figures 18 and 19 can be used to estimate the effects of possible 
future updating of the MSRE design parameters used in this study.  In addition, they support 
other general observations obtained by other means.  For instance, Figure 19 shows that the 
sensitivities to loop effects, such as primary and secondary loop transit times, are important 
relative to core effects.  This indicates that the external loops strongly influence the system 
dynamics, as was concluded in Section 6. 
 
Similar information may be obtained from pole sensitivities (or eigenvalue sensitivities).  These 
are defined as the fractional change of a system pole due to a fractional change in a system 
parameter.  The sensitivity of the dominant pole (the pole whose position in the complex plane 
determines the main characteristics of the dynamic behavior) is usually the only one of interest.  
The dominant pole sensitivities for a number of system parameters are shown in Table 5 for 
power levels of 0.1 and 10 MW.  These results may be used to estimate the effect of future 
updating of the MSRE design parameters, and they also furnish some insight as to the causes of 
the calculated dynamic behavior.  For instance, it is noted that the sensitivity to changes in the 
graphite temperature coefficient is only about one-fourteenth the sensitivity to changes in the 
fuel temperature coefficient at 10 MW.  At 1 MW, the graphite effect is about one-third as large 
as the fuel effect.  This indicates that a decrease in power level causes modifications in the 
dynamic behavior that accentuate the relative effect of graphite temperature feedback.  It is also 
noted that the various heat transfer coefficients have a much larger relative effect at 1 MW than 
at 10 MW; this indicates that the coupling between system components has a larger influence at 
low power than at high power. 
 
Effects of Design Uncertainties 
 
A new method (ref 16) for automatically finding the least stable condition in the range of 
uncertainty in the design parameters was used.  A computer code for the IBM-7090 was used for 
the calculations.  The method is described in some detail in Appendix D.  The least stable 
condition is found by using the steepest-ascent (or gradient-projection) method of nonlinear 
programming. 
 
The quantity that is maximized is the real part of the dominant pole of the system transfer 
function (or equivalently, the dominant eigenvalue of the system matrix).  Less stable conditions 
are accompanied by less negative values for the real part of the dominant pole, and instability is 
accompanied by a pole with a positive real part.  The maximization involves a step-wise 
determination of the particular combination of system parameters within the uncertainty range 
that causes the real part of the dominant pole to have its least negative value.  If the maximized 
pole has a negative real part, instability is not possible in the uncertainty range.  If the maximized 
pole has a positive real part, instability is possible in the uncertainty range if all the system 
parameters deviate from the design point in a particular way. 
 
A key factor in the stability extrema analysis is the availability of the appropriate ranges to 
assign to the system parameters.  The ranges appropriate for the MSRE were furnished by Engel. 
(ref 17) It was decided to use a wide range on the important nuclear parameters (neutron lifetime, 
fuel temperature coefficient of reactivity, and graphite temperature coefficient of reactivity).  
These parameters were allowed to range between two-thirds and three-halves of the design 



values.  All other ranges were assigned by considering the method of evaluating them and the 
probable effects of aging in the reactor environment.  The ranges of the 16 system parameters 
chosen for this study are given in Table 6. 
 

 



The reduced model was used with current parameters for locating the least stable condition in the 
uncertainty range.  This gave results at a much lower cost than with a more complete model.  
This was considered adequate because other calculations showed that the reduced model predicts 
lower stability than the complete model.  The reasons for this were explored in Section 6.  
Experience with other calculations also showed that changes in system parameters gave 
qualitatively the same type of changes in the system performance with either model. 
 

 



The set of parameters for the least stable condition is listed in Table 7.  The least negative value 
of the dominant eigenvalue calculated with the reduced model changes from (-0.0187 ± 0.0474 j) 
sec-1 at the design point to (-0.00460 ± 0.0330 j) sec-1 at the worst condition for 10 MW.  For 1 
MW, the change is from (-0.00182 ± 0.0153j) sec-1 to (+0.000574 ± 0.0134 j) sec-1.  This 
indicates that instability is impossible in the uncertainty range at 10 MW but that the reduced 
model predicts an instability at 1 MW for a combination of parameters within the uncertainty 
range.  This condition gives a transient with a doubling time of about 1/2 hr and a period of 
oscillation of about 8 min per cycle. 
 
It is evident that the calculated instability at the extreme case for 1 MW is due to the inherent 
pessimism of the reduced model (see Section 6).  This was verified by using the MSFR code for 
the complete model with the parameters describing the extreme case.  It was found that the phase 
margin for 10 MW was 75° for the extreme condition (versus 99° for the design condition), and 
the phase margin for 1 MW was 21° for the extreme condition (versus 41° for the design 
condition).  Thus, it is concluded that the best available methods indicate that the MSRE will be 
stable throughout the expected range of system parameters. 
 
8. Conclusions 
 
This study indicates that the MSRE will be inherently stable for all operating conditions.  Low-
power transients without control will persist for a long time, but they will eventually die out 
because of inherent feedback.  Other studies have shown that this sluggish response at low power 
can be eliminated by the control system, which suppresses transients rapidly. 
 
The theoretical treatment used in this study included all known effects that were considered to be 
capable of significantly influencing the system dynamics.  Even so, for safety and also for 
obtaining basic reactor information, system stability will be checked experimentally in dynamic 
tests, which will begin with zero power and which will continue through full-power operation. 
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Appendix A. Model Equations 
 
Core Thermal Dynamics Equations 
 
The differential thermal dynamics equations for a single-core region are given below (see Figure 
5). 
 
First fuel lump: 
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Second fuel lump: 
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Graphite lump: 
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In these equations, 
 
TF1 = mean fuel temperature in first well-stirred tank, or lump, °F, 
t = time, sec, 
τF1 = transit (or holdup) time for fuel in first lump, sec, 
TF1,in = inlet fuel temperature to first lump, °F, 
K1 = fraction of total power generated in first fuel lump, 
MCp1 = heat capacity of first lump, MJ/°F, 
PT = total power, MW, 
KG1 = fraction of total power generated in graphite adjacent to first fuel lump, 
KG2 = fraction of total power generated in graphite adjacent to second fuel lump, 
hA = mean heat transfer coefficient times area for fuel-to-graphite heat transfer, MW/°F, 
TG = mean graphite temperature in section, °F, 
TF2 = mean fuel temperature in second lump, °F, 
τF2 = transit time for fuel in second lump, sec, 
K2 = fraction of total power generated in second lump, 
MCp2 = heat capacity of second lump, MJ/°F, 
MCpG = heat capacity of graphite, Mw-sec/ °F. 
 
Nuclear importances: 
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where 
 
δk1,2,G = changes in effective reactor multiplication due to temperature change in fuel lumps 1 
and 2 and the graphite, respectively, 
IF1,F2,G = importance factors for fuel lumps 1 and 2 and the graphite, respectively; note that 

Σ(IF1 + IF2) = 1.0 (summed over nine sections) 
Σ(IG) = 1.0 (summed over nine sections) 

∂k/∂TF ≡ αF = total fuel temperature coefficient of reactivity, δk/k*°F, 
∂k/∂TG ≡ αG = total graphite temperature coefficient of reactivity, δk/k*°F, 
 
In the nine-region core model, the individual regions are combined as shown in Figure 5.  The 
nuclear average fuel and graphite temperatures, reactivity feedback, and core outlet temperatures 
are computed as functions of nuclear power and core inlet temperature for both the analog and 
frequency-response models.  The core transfer function equations solved in the MSRE frequency 
response code are as follows. 
 
Single Core Region. The equations are obtained by substituting the Laplace transform variable, 
s, for dt in Equations (A.1) through (A.6) and solving for TF1, TF2, TG, and δk in terms of the 
inputs TF1 in and PT. It is assumed (without loss of generality) that the variables are written as 
deviations from steady state. Thus the Laplace transformed equations that follow do not contain 
initial conditions: 
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Multiregion Core 
 
The overall transfer functions for an axial section of core consisting of several regions in series 
are complicated by the fact that the inputs to the upper (or downstream) regions are affected by 
the response of the lower regions. A block diagram illustrating the coupling in terms of the 
transfer functions H1-4(s) is shown in Figure A.1. 

 
The general forms of the coupled equations of n regions in series are 
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The mean value of the core outlet temperature, Tco for m axial sections in parallel is 
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where FFj is the fraction of the total flow in the jth axial section. The total δk is simply the sum of 
all the individual contributions. 
 



The calculation of nuclear average temperature transfer functions was added to the MSRE 
frequency-response code as an afterthought; consequently there is some repetition in the 
calculations. The transfer functions of nuclear average temperature contributions from each core 
region are 
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where the asterisk indicates a nuclear average temperature 
 
The equations for the total nuclear average temperatures of the nine-region core model are 
derived the same way as the general equations for δk, Equations (A.15) and (A.16). The second 
subscripts refer to the nine core regions, as designated in Figure 5. The equations are 
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Neutron Kinetics 
 
Nonlinear Equations Neutron balance: 

    
i

iiT Ckn
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 (A.26) 

Precursor balance 

 ii
ii Ckn

dt
dC 

 *
 (A.27) 

In these expressions 
n = neutron population, 
t = time, sec, 
ℓ* = prompt-neutron lifetime, sec, 
k = reactor multiplication, 
βT = total delayed-neutron fraction, 
βi = effective delayed-neutron fraction for ith precursor group, 
λi = decay constant for ith precursor, 
Ci = ith precursor population. 
 
For the one-group approximation, the effective β in the precursor balance equation was simply 
the sum of the β's for the six groups. The average decay constant λ was calculated from Equation 
(A.28): 
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Linearized Equations with Circulating Precursor Dynamics 
 
The differential equation for the precursor population in the core is 
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where 
 
β'i = effective delayed-neutron fraction for ith precursor group 
τc = core holdup time, seconds 
τL = loop holdup time, seconds 
 
For this treatment, we assumed that the core is a well-stirred tank and that the precursor transport 
around the loop is a pure delay. We obtained the linearized neutron kinetics equation used in the 
frequency-response calculation from Equations (A.26) and (A.29); 
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where 
 
n0 = steady-state nuclear power, MW 
k0 = steady-state multiplication constant 
 
and the circumflex (^) indicates a perturbation quantity, that is, 
 
k(t) = k0 + k^. 
 
The value of the critical reactor multiplication factor k0 is computed by setting dn/dt and dCi/dt 
equal to zero in Equations (A.26) and (A.29): 
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Heat Exchanger and Radiator Equations 
 
The coefficients for the heat exchanger and radiator equations are given in terms of time 
constants and dimensionless parameters. A detailed discussion of this model is given in reference 
18. The equations, based on the model shown in Figure A.2, are 
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where the nomenclature of Figure 7 applies to the temperatures, T, and 
 
TS = mean shell temperature, °F, 
t* = transport time, sec, 
τ = heat transfer time constant MCp/hA, sec, 
n = section length = hA/WCp, dimensionless. 
 

 
The subscripts have the following meanings: 
 
1 = fluid 1 side, 
2 = fluid 2 side, 
T = tube side, 
S = shell side. 
 
Also, 
 
h = heat transfer coefficient, Btu/sec*ft2*°F, 
A = heat transfer area, ft2, 
M = mass of tube or shell, lb, 
Cp = specific heat, Btu/lb*°F, 



W = mass flow rate, lb/sec. 
 
Since it is the radiator air flow rate that is varied to change the load demand, the radiator shell-
side coefficients will vary with power level. The coefficients listed in Appendix B are for a 
197-lb/sec air flow rate, corresponding to 10-MW power removal at design temperatures. In all 
the studies, hair was varied as the 0.6 power of the flow rate, and Wair as the first power. 
 
The solutions of the Laplace-transformed transfer function equations are 
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where 
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To compute the transfer functions of an arbitrary number of equal lumps connected in series, we 
considered first the transfer functions for two lumps in series, as in Figure A.3, where for each 
lump, 
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The transfer functions for the two combined lumps are 
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To solve for more lumps in series, we set the primed functions equal to the respective combined 
transfer functions and repeated the computation. 
 
Equations for Piping Lags 
 
The first-order (or well-stirred-tank) approximation used in the reduced model, is given by 

  TT
dt
Td

in 

1  (A.46) 

where 
 
T-bar = mean (and outlet) fluid temperature, °F, 
Tin = fluid inlet temperature, °F, 
τ = fluid holdup time, sec, 
 
and heat transfer to the piping is neglected. 
 
In the intermediate model, fourth-order Pade approximations were used. They are series 
expansions of the Laplace transform expressions for a pure delay: 

   443322

443322

55.131205361072
55.131205361072exp

ssss
sssss







  (A.47) 

The heat transfer to the piping and the reactor vessel was approximated by lead-lag networks. 
The method for obtaining the coefficients L1 and L2 is described in detail in reference 9. The 
general form of the equation is 
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In the complete model, the heat transfer to the piping and the transport lag were represented by 
the exact solution to the plug-flow equations: 
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where 
 
n = section length = hA/WCp, dimensionless, 
τ = transport lag, sec, 
τp = time constant for heat transfer to pipe = MCp/hA, sec.  
 
Equations for Xenon Behavior 
 
Xenon was considered only in the present frequency-response model. The following differential 
equations were used: 
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 GXKXKk 1110   (A.53) 

where 
 
XG = xenon concentration in graphite, atoms/cc, 
X' = xenon concentration in fuel salt, atoms/cc, 
I = iodine concentration in fuel salt, atoms/cc, 
P = nuclear power, MW, 
δk = change in reactor multiplication factor due to change in xenon concentrations, 
K1-11 = constants. 
 
Delayed Power Equations 
 
The equation for total thermal power, PT, includes, a first-order lag approximation of the delayed 
nuclear power due to gamma heating 
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where 
 
Kd = the fraction of flux power delayed, 
n = flux power, MW, 
PT = total thermal power, MW, 
τg = effective time constant for the delayed power, sec. 
 



The frequency response of the thermal power in terms of-n is 
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Appendix C. General Description of MSRE Frequency-Response Code 
 
The MSRE frequency-response code (MSFR) is written in FORTRAN IV language for the IBM 
7090 computers at the Oak Ridge Central Data Processing Facility. This language has built-in 
capabilities for handling complex algebra that result in considerable savings of programming 
effort. 
 
MSFR uses transfer function techniques (rather than matrix methods) to compute frequency 
response. It exploits the fact that a reactor system is made up of separate components, each 
having a certain number of inputs and outputs, which tie in with adjacent components. The 
subroutines written for each subsystem were useful in other reactor and process dynamics 
calculations. The MAIN program of MSFR performs input, output, and supervisory chores, and 
calls the subroutines. A subroutine called CLOSED must be written to compute the desired 
closed-loop transfer functions from the component transfer functions. 
 
The transfer function approach has several advantages over the matrix methods: 
 
1. Input parameters are the physical coefficients of the subsystems, rather than sums and 

differences. This not only makes generating input data easy, it allows the computer to carry 
out the sum-difference-type arithmetic internally. Several matrix type computations, for 
which the matrix coefficients were generated "carefully" with long slide rules resulted in 
large errors in the frequency response. 

2. The frequency response of distributed-parameter models can be computed exactly with 
MSFR, while most matrix calculations are limited to lumped-parameter models. 

3. MSFR calculations are much faster. The 7090 can put out between 1000 and 2000 frequency-
response points per minute for the complete model. Typical running times for current matrix 
calculations are much longer. 

 
The matrix technique has the advantages that special programming is not required for each 
different problem, and no algebraic manipulations of the equations are required. Also, matrix 
manipulations can be used for optimization calculations, eigenvalue calculations, time-response 
calculations, and possibly many others, all with the same input data. 
 
The advantages of both methods were exploited in this study. 
 
The following subroutines of MSFR have potential as generally useful packages: 
 
1. PWR, which calculates the frequency response (N/δk) of the nuclear kinetics equations for 

up to six groups of precursors, with an option for including circulating precursor dynamics. 
2. CLMP, which computes the frequency response of a "typical" core region (as noted in 

Appendix A). Inputs are power and inlet temperature, and outputs are outlet temperature, 
nuclear average temperatures, and δk. 

3. COR9, which calculates the overall frequency responses of the MSRE nine-lump core model 
using CLMP outputs. 



4. LHEX, which calculates the transfer functions of a lumped-parameter heat exchanger (as in 
Appendix A), with an input option for solving for up to 99 typical sections in series in a 
counterflow configuration. 

5. PLAG, which computes the frequency response of piping lags for an arbitrary number of 
first-order series lags, a fourth-order Pade approximation, or a pure delay, or combinations of 
these, with heat transfer to the piping. 

 
Figure C.l shows the block diagram used as a guide to compute the closed-loop transfer 
functions. Typical outputs of the subroutine CLOSED are N/δk (closed loop), Nyquist stability 
information, nuclear average temperatures T*F/δk and T*G/δk, and Tco/δk and Tci/δk. 
 
Several commonly used transfer functions are 
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Each of these closed-loop equations can be written as a single FORTRAN IV statement, so it is a 
simple matter to generate different functions. An option is also available in MSFR to print out all 
the internal or component transfer functions. FORTRAN IV listings, decks, and input 
information may be obtained from S. J. Ball. 
 



 
  



Appendix D. Stability Extrema Calculation 
 
For a linear description of a reactor system, the eigenvalues of the system matrix must all have 
negative real parts for stability. A technique (reference 16) was developed that systematically 
seeks out the combination of system parameters that causes the least stable condition in the 
feasible range (causes the dominant eigenvalue to become as positive as possible). This 
technique utilizes a form of the gradient-projection method to explore the hypersurface that 
defines the stability index (the negativeness of the real part of the dominant eigenvalue) as a 
function of the system parameters. The upper and lower limits on the expected ranges of system 
parameters constitute constraint surfaces that limit the area of search on the performance 
hypersurface. 
 
The real part of the dominant eigenvalue is labeled β. The change in β due to small changes in 
the system parameters, xℓ, is given by 

  cosxdxdd   (D.1) 

where 
 
dβ = incremental change in β, 
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Thus the maximum change in β occurs when θ = 0; that is, the changes in the system parameters 
are in the same vector direction as the gradient vector. It is therefore expected that the greatest 
change in β will occur when the system parameters change in proportion to their corresponding 
elements in the gradient vector: 
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where γ is a real positive coefficient whose magnitude is chosen to insure that constraints are 
satisfied. 
 
It is clear that the calculated values of the components of β are the key quantities in 
implementation of this method. The method for finding β can be developed from the 
characteristic equation for the system given in determinant form: 

 0 sIAD  (D.3) 

where 
 



A = the system matrix, 
s = an eigenvalue of A, 
I = the unit diagonal matrix. 
 
We now write D with some arbitrary eigenvalue sk factored out: 
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where F(s) is a nonzero determinant if sk is a simple eigenvalue. We differentiate Equation (D.4) 
with respect to an element aij of the matrix A and with respect to s: 
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We then evaluate Equations (D.5) and (D.6) for s = sk and take their ratio to get Equation (D.7): 
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The derivative, ∂D/∂aij is just the cofactor of aij in [A - sI], and ∂D/∂s is the negative of the sum 
of the cofactors of diagonal elements of [A - sI]. Thus Equation (D.5) may be written 
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If we choose sk to be the least negative eigenvalue, the real part of sk is just β. Since aij is real, we 
may write 

 


























n

f
ff

ij

ij C

C
a

1

Re  (D.9) 

The derivative with respect to a system parameter, xℓ, is easily obtained from Equation (D.9), 
since the following relation holds: 
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We use this in Equation (D.9) to obtain 
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The usefulness of Equation (D.10) rests on the ability to calculate the system eigenvalue, sk, to 
give [A - skI]. This may be readily accomplished by using one of the standard eigenvalue 
computation methods, such as Parlett's method or the QR method. (ref 14) 
 
The cofactors in Equation (D.10) could be calculated directly with a method such as Gaussian 
elimination. However, this tedious procedure may be circumvented by application of a useful 
theorem from matrix algebra. 
 
It is known that the cofactors of parallel lines in a matrix with order n and rank n - 1 are 
proportional. (ref 20) Since [A - skI] is a matrix with these properties, the cofactor calculation 
may be simplified. For instance, if the cofactors of the first row and first column of [A - skI] are 
calculated, all other cofactors are given by 
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Use of Equation (D.11) to find the cofactors shown in Equation (D.10) gives a practical method 
for finding the derivatives ∂β/xℓ needed to carry out the gradient-projection step shown in 
Equation (D.2). 
 
Gradient methods are useful for finding local extrema for nonlinear problems. However, it may 
be possible for the surface of β versus system parameters to have many peaks. The only 
technique currently suitable for handling this problem is to use multiple starts. The computer 
code developed to implement this method is set up to use multiple starts automatically. 
 
The procedure for carrying out the maximization from a given base point is to recalculate the 
eigenvalues for several new parameter sets specified by steps out the gradient vector. The point 
that gives the system with the largest value of β is then used as a new starting point. This is 
repeated until a maximum within the constrained set of system parameters is found. 


